The Chain Rule

The Chain Rule is used to differentiate Composite Functions!

The Chain Rule

$$\frac{dy}{dx} [f(g(x))] = f'(g(x)) \bullet g'(x)$$

To find derivatives of composite functions:

- 1) Identify the composite functions as inner function (usually inside parentheses or grouping symbols) and an outer function.
- 2) Differentiate the outer function letting the inner function "tag along" as one quantity or expression.
- 3) Differentiate the *inner function* and multiply by the expression from #2.
- Differentiate $\frac{dy}{dx}(2x-1)^4$ EX)
- 1) Inner function is 2x-1 and outer function is x^4
- 2) $4(2x-1)^3$
- 3) $4(2x-1)^3 \cdot 2 = 8(2x-1)^3$

$$8(2x-1)^3$$

Reminder:
$$\sin^2 x$$
 means $(\sin x)^2$

Find the derivative of each function EX)

A)
$$f(x) = \sin(2x)$$

B)
$$f(x) = \sin^2 x$$

A)
$$f(x) = \sin(2x)$$
 B) $f(x) = \sin^2 x$ C) $f(x) = \sin^2 2x$

D)
$$f(x) = \sqrt[3]{x^2 + 2}$$

E)
$$f(x) = \sqrt{\csc x}$$

D)
$$f(x) = \sqrt[3]{x^2 + 2}$$
 E) $f(x) = \sqrt{\csc x}$ F) $f(x) = x^2 \cdot \sqrt[3]{1 - x^2}$

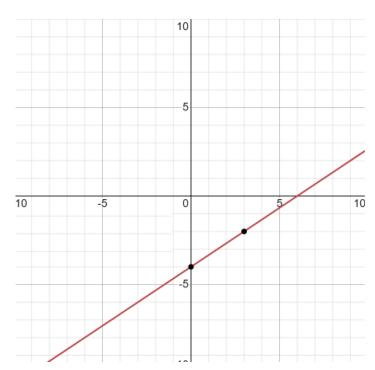
Use calculus and algebra to find the coordinates of all points which have EX) horizontal tangent lines to f(x).

$$f(x) = x^2 (4x-12)^2$$

Note: Rational Expressions can be differentiated using the quotient rule OR the product rule(denominator written in numerator using negative exponents).

EX) Differentiate
$$f(x) = \frac{x}{\sqrt{x^2 + 4x}}$$

AP EXAMPLES


EX) The following table lists the values of functions f and g, and of their derivatives, f' and g', for the x-values 0 and 3.

x	f(x)	g(x)	f'(x)	g'(x)
0	0	-3	2	1
3	-3	0	-4	1

Let function F be defined as $F(x)=f\Big(g(x)\Big).$

$$F'(3) =$$

EX)

Given f(x) from the graph above and $g(x) = \sqrt{x+4}$. If h(x) = f(g(x)) find the value of h'(0).