Inverse Functions and Slope

W-up:

Find $f \circ g(x)$ and $g \circ f(x)$ using the functions below.

$$f(x) = x^3 + 1$$
$$g(x) = \sqrt[3]{x - 1}$$

Functions are inverses if and only if

$$f \circ f^{-1}(x) = x$$
 and $f^{-1} \circ f(x) = x$

Inverse functions are the result of switching the x and y coordinates resulting in graphs which reflect over the line y = x (the identity line)

To find an inverse function simply switch the x and y and solve the equation for y

EX) Find the inverse of $f(x) = 3x^3 - 1$

GRAPHS OF INVERSE FUNCTIONS HAVE RECIPROCAL SLOPES AT INVERTED (switched) POINTS

Given
$$f(x) = x^3$$
 and $g(x) = \sqrt[3]{x}$

Find f'(2) and g'(8)

EX) It is given that $h \circ p(x) = x$ and h(-4) = 3 while h'(-4) = 9.

Find p'(3)

AP Questions

EX 1)

If f(-3) = 2 and $f'(-3) = \frac{3}{4}$, then $(f^{-1})'(2) =$

- (A) $\frac{1}{2}$ (B) $\frac{4}{3}$ (C) $\frac{3}{2}$

(D) $-\frac{3}{4}$

EX 2)

Let f be the function defined by $f(x) = 2x + e^x$. If $g(x) = f^{-1}(x)$ for all x and the point (0, 1) is on the graph of f, what is the value of g'(1)?

- (A) $\frac{1}{2+e}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 3 (E) 2+e