Given $f \circ g(x) = x$, use implicit differentiation to find *derivative* of g(x) at the given point.

- 1a) $f(x) = x^3 7x^2 + 2$ and g(-4) = 1
- 1b) $f(x) = 2\ln(x^2 3)$ and g(0) = 2

 $x = v^3 - 7v^2 + 2$

$$1 = 3y^2 \frac{dy}{dx} - 14y \frac{dy}{dx}$$

$$\frac{dy}{dx} = \frac{1}{3y^2 - 14y}$$

At
$$(-4, 1)$$
, $\frac{dy}{dx} = \frac{1}{3 - 14} = \frac{-1}{11}$

2) AP MULTIPLE CHOICE EXAMPLES

- 1) If the function f is defined by $f(x) = x^5 1$, then f^{-1} , the inverse function of f, is defined by $f^{-1}(x) =$
 - (A) $\frac{1}{\sqrt[5]{x}+1}$

(B) $\frac{1}{\sqrt[5]{x+1}}$

(C) $\sqrt[5]{x-1}$

(D) $\sqrt[5]{x} - 1$

- (E) $\sqrt[5]{x+1}$
- 2) Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and if g(-2) = 5 and $f'(5) = -\frac{1}{2}$, then g'(-2) =
 - (A) 2

- (B) $\frac{1}{2}$ (C) $\frac{1}{5}$ (D) $-\frac{1}{5}$ (E) -2

- The function f is defined by $f(x) = x^3 + 4x + 2$. If g is the inverse function of f and g(2) = 0, what is the value of g'(2)?
 - (A) $-\frac{1}{16}$ (B) $-\frac{4}{81}$ (C) $\frac{1}{4}$ (D) 4

- 4) If $f(x) = \sin x$, then $(f^{-1})'(\frac{\sqrt{3}}{2}) =$
 - (A) $\frac{1}{2}$
- (B) $\frac{2\sqrt{3}}{3}$
- (C) $\sqrt{3}$

(D) 2