1b) $f(x) = x^2 - 2 - \cos x$ is continuous on $[0, \pi]$. f(0) = -3 and $f(\pi) = \pi^2 - 1 \approx 8.87 > 0$. By the Intermediate Value Theorem, f(c) = 0 for at least one value of c between 0 and π .

2b)
$$g(t) = 2 \cos t - 3t$$

g is continuous on $[0, 1]$.
 $g(0) = 2 > 0$ and $g(1) \approx -1.9 < 0$.

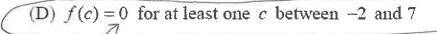
By the Intermediate Value Theorem, g(c) = 0 for at least one value of c between 0 and 1. Using a graphing utility to zoom in on the graph of g(t), you find that $t \approx 0.56$. Using the root feature, you find that $t \approx 0.5636$.

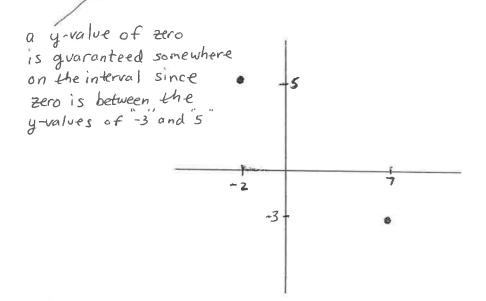
- 2c) f(x) is a **continuous** polynomial. All values between -4 and 1 occur on the interval [-2, -1] so a zero must occur in that interval(likely near x = -1). All values between -1 and 1 occur on the interval [-1, 1] so a zero must occur in that interval(likely near x = 0). All values between -1 and 4 occur on the interval [1, 2] so a zero must occur in that interval(likely near x = 1.25).
- 3b) **YES**, we are guaranteed Michelle jogs 230 meters/minute at least once. Michelle is running 200 meters per minute at time t = 12 minutes & 240 meters per minute at t = 20 minutes. Since all velocities between 200 and 240 must occur on the interval [12, 20] because she jogs **continuously**, we are guaranteed a velocity of 230 meters/minute occurs in this time interval.

4) AP MULTIPLE CHOICE EXAMPLE

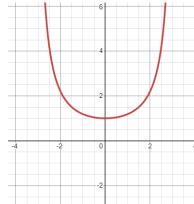
Let f be a continuous function on the closed interval [-2,7]. If f(-2)=5 and f(7)=-3, then the Intermediate Value Theorem guarantees that

- (A) f'(c) = 0 for at least one c between -2 and 7
- (B) f'(c) = 0 for at least one c between -3 and 5
- (C) f(c) = 0 for at least one c between -3 and 5



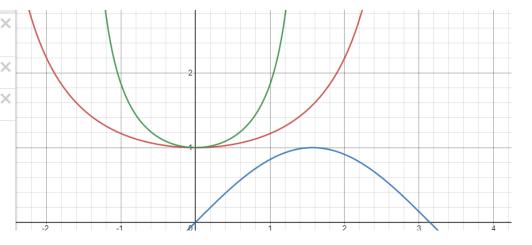


Since continuous over [-2,7], all y-values between -3 and 5 occur on this interval.



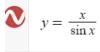
 $\lim_{x\to 0} \frac{x}{\sin x}$ Appears to be equal to 1!

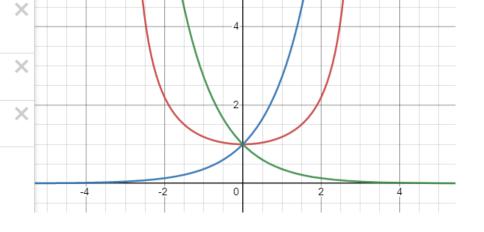
B) i. NO, $\sin x \le \frac{x}{\sin x} \le \sec x$ when x = 0, the $\lim_{x \to 0} \sin x = 0$ while $\lim_{x \to 0} \sec x = 1$



ii. YES, $e^x \le \frac{x}{\sin x} \le e^{-x}$ when x = 0 $\lim_{x \to 0} e^x = 1$ and $\lim_{x \to 0} e^{-x} = 1$

$$\lim_{x\to 0} e^x = 1$$
 and $\lim_{x\to 0} e^{-x} = 1$





iii. YES, $-|x|+1 \le \frac{x}{\sin x} \le |x|+1$ when x = 0 AND $\lim_{x \to 0} -|x|+1 = 1$ and $\lim_{x \to 0} |x|+1 = 1$

