In Exercises 1-8, show that f and g are inverse functions (a) algebraically and (b) graphically.

1.
$$f(x) = 5x + 1$$
,

$$g(x) = (x - 1)/5$$

2.
$$f(x) = 3 - 4x$$
,

$$g(x) = (3 - x)/4$$

3.
$$f(x) = x^3$$
,

$$g(x) = \sqrt[3]{x}$$

4.
$$f(x) = 1 - x^3$$

$$g(x) = \sqrt[3]{1-x}$$

5.
$$f(x) = \sqrt{x-4}$$

$$g(x) = x^2 + 4, \quad x \ge 0$$

5.
$$f(x) = x$$
, $g(x) = \sqrt{x}$
4. $f(x) = 1 - x^3$, $g(x) = \sqrt[3]{1 - x}$
5. $f(x) = \sqrt{x - 4}$, $g(x) = x^2 + 4$, $x \ge 0$
6. $f(x) = 9 - x^2$, $x \ge 0$, $g(x) = \sqrt{9 - x}$

$$g(x) = \sqrt{9-x}$$

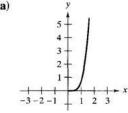
$$7.-f(x) = 1/x,$$

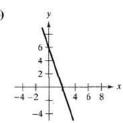
$$g(x) = 1/x$$

8.
$$f(x) = \frac{1}{1 + x}, \quad x \ge 0$$

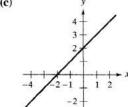
8.
$$f(x) = \frac{1}{1+x}$$
, $x \ge 0$, $g(x) = \frac{1-x}{x}$, $0 < x \le 1$

In Exercises 9-12, match the graph of the function with the graph of its inverse. [The graphs of the inverse functions are labeled (a), (b), (c), and (d).]

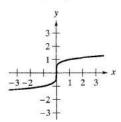


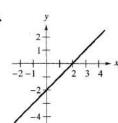


(c)

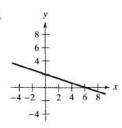


(d)

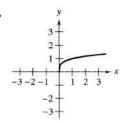




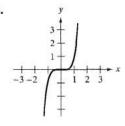
10.



11.



12.



In Exercises 13-20, find the inverse of f. Graph (by hand) f and f^{-1} . Decribe the relationship between the graphs.

13.
$$f(x) = 2x - 3$$

14.
$$f(x) = 3x$$

15.
$$f(x) = x^5$$

16.
$$f(x) = x^3 + 1$$

17.
$$f(x) = \sqrt{x}$$

18.
$$f(x) = x^2, x \ge 0$$

10
$$f(y) = \sqrt{4 - y^2}$$

19.
$$f(x) = \sqrt{4 - x^2}, \quad x \ge 0$$
 20. $f(x) = \sqrt{x^2 - 4}, \quad x \ge 2$

335

In Exercises 21–26, find the inverse of f. Use a graphing utility to graph f and f^{-1} in the same viewing rectangle. Describe the relationship between the graphs.

21.
$$f(x) = \sqrt[3]{x-1}$$

22.
$$f(x) = 3\sqrt[5]{2x-1}$$

23.
$$f(x) = x^{2/3}, x \ge 0$$

24.
$$f(x) = x^{3/5}$$

25.
$$f(x) = \frac{x}{\sqrt{x^2 + 7}}$$

26.
$$f(x) = \frac{x+2}{x}$$

In Exercises 27 and 28, find the inverse function of f over the indicated interval. Use a graphing utility to graph f and f^{-1} in the same viewing rectangle. Describe the relationship between the graphs.

-				
H	71	17	n	10

27.
$$f(x) = \frac{x}{x^2 - 4}$$
 $-2 < x < 2$

$$-2 < x < 2$$

28.
$$f(x) = 2 - \frac{3}{x^2}$$
 $0 < x < 10$

Graphical Reasoning In Exercises 29-32, (a) use a graphing utility to graph the function, (b) use the drawing feature of a graphing utility to draw the inverse of the function, and (c) determine whether the graph of the inverse relation is an inverse function. Explain your reasoning.

29.
$$f(x) = x^3 + x + 4$$

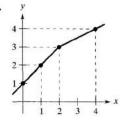
30.
$$h(x) = x\sqrt{4-x^2}$$

31.
$$g(x) = \frac{3x^2}{x^2 + 1}$$

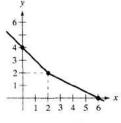
32.
$$f(x) = \frac{4x}{\sqrt{x^2 + 15}}$$

In Exercises 33 and 34, use the graph of the function f to complete the table and sketch the graph of f^{-1} .

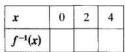
33.



34.



x	1	2	3	4
$f^{-1}(x)$				



35. Cost Suppose you need 50 pounds of two commodities costing \$1.25 and \$1.60 per pound.

(a) Verify that the total cost is

$$y = 1.25x + 1.60(50 - x)$$

where x is the number of pounds of the less expensive commodity.

- (b) Find the inverse of the cost function. What does each variable represent in the inverse function?
- (c) Use the context of the problem to determine the domain of the inverse function.
- (d) Determine the number of pounds of the less expensive commodity purchased if the total cost is \$73.

36. Think About It The function

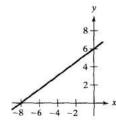
$$f(x) = k(2 - x - x^3)$$

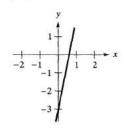
is one-to-one and $f^{-1}(3) = -2$. Find k.

In Exercises 37-40, use the horizontal line test to determine whether the function is one-to-one on its entire domain and therefore has an inverse.

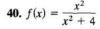
37.
$$f(x) = \frac{3}{4}x + 6$$

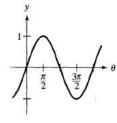
38.
$$f(x) = 5x - 3$$

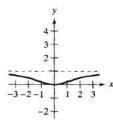




39.
$$f(\theta) = \sin \theta$$







In Exercises 41-46, use a graphing utility to graph the function. Determine whether the function is one-to-one on its entire domain.

41.
$$h(s) = \frac{1}{s-2} - 3$$

42.
$$g(t) = \frac{1}{\sqrt{t^2+1}}$$

$$43. f(x) = \ln x$$

44.
$$f(x) = 3x\sqrt{x+1}$$

45.
$$g(x) = (x + 5)^3$$

46.
$$h(x) = |x+4| - |x-4|$$

In Exercises 47-52, use the derivative to determine whether the function is strictly monotonic on its entire domain and therefore has an inverse.

47.
$$f(x) = (x + a)^3 + b$$

48.
$$f(x) = \cos \frac{3x}{2}$$

49.
$$f(x) = \frac{x^4}{4} - 2x^2$$
 50. $f(x) = x^3 - 6x^2 + 12x$

$$\mathbf{50.}\ f(x) = x^3 - 6x^2 + 12x$$

51.
$$f(x) = 2 - x - x^3$$

Function

52.
$$f(x) = \ln(x - 3)$$

In Exercises 53-58, show that f is strictly monotonic on the indicated interval and therefore has an inverse on that interval.

Interval

53. $f(x) = (x-4)^2$	[4, ∞)
54. $f(x) = x + 2 $	$[-2, \infty)$
$55. \ f(x) = \frac{4}{x^2}$	$(0, \infty)$
$56. \ f(x) = \tan x$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
$57. f(x) = \cos x$	$[0, \pi]$

58.
$$f(x) = \sec x$$
 $\left[0, \frac{\pi}{2}\right]$

Think About It In Exercises 59 and 60, the derivative of the function has the same sign for all x in its domain, but the function is not one-to-one. Explain.

59.
$$f(x) = \tan x$$

60.
$$f(x) = \frac{x}{x^2 - 4}$$

In Exercises 61-64, determine whether the function is one-toone. If it is, find its inverse.

61.
$$f(x) = \sqrt{x-2}$$

62.
$$f(x) = -3$$

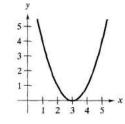
63.
$$f(x) = |x - 2|, x \le 2$$

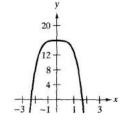
64.
$$f(x) = ax + b$$
, $a \neq 0$

In Exercises 65-68, delete part of the graph of the function so that the part that remains is one-to-one. Find the inverse of the remaining part and give the domain of the inverse. (Note: There is more than one correct answer.)

65.
$$f(x) = (x-3)^2$$

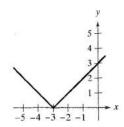
66.
$$f(x) = 16 - x^4$$

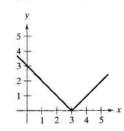




337

68.
$$f(x) = |x - 3|$$





Real Number

Think About It In Exercises 69–72, decide whether the function has an inverse. If so, what is the inverse?

- **69.** g(t) is the volume of water that has passed through a water line t minutes after a control valve is opened.
- **70.** h(t) is the height of the tide t hours after midnight, where $0 \le t < 24$.
- 71. C(t) is the cost of a long distance call lasting t minutes.
- 72. A(r) is the area of a circle of radius r.

Function

Functions

79. $f(x) = x^3$

In Exercises 73–78, find $(f^{-1})'(a)$ for the function f and real number a.

73. $f(x) = x^3 + 2x - 1$	a = 2
74. $f(x) = 2x^5 + x^3 + 1$	a = -2
75. $f(x) = \sin x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$	$a=\frac{1}{2}$
76. $f(x) = \cos 2x$, $0 \le x \le \frac{\pi}{2}$	a = 1
77. $f(x) = x^3 - \frac{4}{x}$	a = 6
78. $f(x) = \sqrt{x-4}$	a = 2

In Exercises 79–82, (a) find the domains of f and f^{-1} , (b) find the ranges of f and f^{-1} , (c) graph f and f^{-1} , and (d) show that the slopes of the graphs of f and f^{-1} are reciprocals at the indicated points.

Point

 $(\frac{1}{2}, \frac{1}{8})$

$f^{-1}(x) = \sqrt[3]{x}$	$\left(\frac{1}{8},\frac{1}{2}\right)$
80. $f(x) = 3 - 4x$	(1, -1)
$f^{-1}(x)=\frac{3-x}{4}$	(-1, 1)
81. $f(x) = \sqrt{x-4}$	(5, 1)
$f^{-1}(x) = x^2 + 4$	(1, 5)
82. $f(x) = \frac{1}{1+x^2}, x \ge 0$	$\left(1,\frac{1}{2}\right)$
$f^{-1}(x) = \sqrt{\frac{1-x}{x}}$	$\left(\frac{1}{2},1\right)$

In Exercises 83 and 84, find dy/dx at the indicated point for the equation.

83.
$$x = y^3 - 7y^2 + 2$$
 84. $x = 2 \ln(y^2 - 3)$ (0, 4)

In Exercises 85-88, use the functions

$$f(x) = \frac{1}{8}x - 3$$
 and $g(x) = x^3$

to find the indicated value.

85.
$$(f^{-1} \circ g^{-1})(1)$$
 86. $(g^{-1} \circ f^{-1})(-3)$ **87.** $(f^{-1} \circ f^{-1})(6)$ **88.** $(g^{-1} \circ g^{-1})(-4)$

In Exercises 89-92, use the functions

$$f(x) = x + 4$$
 and $g(x) = 2x - 5$

to find the indicated function.

89.
$$g^{-1} \circ f^{-1}$$
 90. $f^{-1} \circ g^{-1}$ **91.** $(f \circ g)^{-1}$ **92.** $(g \circ f)^{-1}$

- 93. Prove that if f and g are one-to-one functions, then $(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$.
- **94.** Prove that if f has an inverse, then $(f^{-1})^{-1} = f$.
- 95. Prove that if a function has an inverse, then the inverse is unique.
- 96. Prove that a function has an inverse if and only if it is one-toone.

True or False? In Exercises 97-100, determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false.

- **97.** If f is an even function, then f^{-1} exists.
- **98.** If the inverse of f exists, then the y-intercept of f is an x-intercept of f^{-1} .
- **99.** If $f(x) = x^n$ where n is odd, then f^{-1} exists.
- **100.** There exists no function f such that $f = f^{-1}$.
- 101. Is the converse of the second part of Theorem 5.7 true? That is, if a function is one-to-one (and hence has an inverse), then must the function be strictly monotonic? If so, prove it. If not, give a counterexample.
- **102.** Let *f* be twice-differentiable and one-to-one on an open interval *I*. Show that its inverse *g* satisfies

$$g''(x) = -\frac{f''(g(x))}{[f'(g(x))]^3}.$$

If f is increasing and concave downward, what is the concavity of $f^{-1} = g$?

103. If
$$f(x) = \int_2^x \frac{dt}{\sqrt{1+t^4}}$$
, find $(f^{-1})'(0)$.