Using the Graphing Calculator to Find Derivatives

From the Graph Screen

- 1) Place the function into Y=
- 2) Be sure the x-value to be evaluated is in the viewing window of the graph
- 3) Press $\frac{2^{\text{nd}}}{\sqrt{2}}$, $\frac{\text{Calc}}{\sqrt{2}}$ (6), the x-value you want the slope calculated, ENTER

From the Home Screen

Press MATH, nDeriv(8), functional expression used, comma key(,), X, the x-value you want the slope calculated, right parentheses key, ENTER

EX) nDeriv($(3x^2-2x+1, x, 3)$ will find the slope of $f(x) = 3x^2-2x+1$ at x = 3.

NOTE: Graphing Calculator can only EVALUATE the derivative for values of x. It cannot give you the derivative itself(as a function)

Sneaky way to have the calculator sketch the graph of the derivative function using the Y= function of the graphing calculator:

$$Y = nDeriv((function, x, x))$$

EX) Graph Y = nDeriv($(3x^2-2x+1, x, x)$ and the graph for y=6x-2 should appear!

Using the Graphing Calculator to Draw a Tangent Line

- 1) Place the function into Y=
- 2) Be sure the x-value of the point of tangency is in the viewing window of the graph
- 3) Press 2nd, Draw(PRGM key), Tangent(5), the x-value of the point of tangency, ENTER

The tangent line will be drawn on the graph and its equation should appear at the bottom in y = mx + b form.

Note: There is no way to trace on the tangent line or any other creation from the DRAW menu of the graphing calculator.

BE CAREFUL!

The graphing calculator cannot take the place of your brain and will give numeric answers for derivatives that DO NOT EXIST(sharp points).

EX) Graph $y = x^{2/3}$ and find the derivative at x = 0.